14 research outputs found

    Constraint programming for wireless sensor networks

    Full text link

    Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

    Full text link
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance

    Constraint Programming for Wireless Sensor Networks

    No full text
    In recent years, wireless sensor networks (WSNs) have grown rapidly and have had a substantial impact in many applications. A WSN is a network that consists of interconnected autonomous nodes that monitor physical and environmental conditions, such as temperature, humidity, pollution, etc. If required, nodes in a WSN can perform actions to affect the environment. WSNs present an interesting and challenging field of research due to the distributed nature of the network and the limited resources of the nodes. It is necessary for a node in a WSN to be small to enable easy deployment in an environment and consume as little energy as possible to prolong its battery lifetime. There are many challenges in WSNs, such as programming a large number of nodes, designing communication protocols, achieving energy efficiency, respecting limited bandwidth, and operating with limited memory. WSNs are further constrained due to the deployment of the nodes in indoor and outdoor environments and obstacles in the environment. In this dissertation, we study some of the fundamental optimisation problems related to the programming, coverage, mobility, data collection, and data loss of WSNs, modelled as standalone optimisation problems or as optimisation problems integrated with protocol design. Our proposed solution methods come from various fields of research including constraint programming, integer linear programming, heuristic-based algorithms, and data inference techniques.ProFu

    Dynamic Demand-Capacity Balancing for Air Traffic Management : Using Constraint-Based Local Search

    No full text
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance

    Enabling design of performance-controlled sensor network applications through task allocation and reallocation

    No full text
    Task Graph (ATaG) is a sensor network application development paradigm where the application is visually described by a graph where the nodes correspond to application-level tasks and edges correspond to dataflows. We extend ATaG with the option to add nonfunctional requirements: constraints on end-to-end delay and packet delivery rate. Setting up these constraints at the design phase naturally leads to enabling run-time assurance at the deployment phase, when the conditions of the constraints are used as network's performance goals. We provide both run-time middleware that checks the conditions of these constraints and a central management unit that dynamically adapts the system by doing task reallocation and putting task copies on redundant nodes. Through extensive simulations we show that the system is efficient enough to enable adaptations within tens of seconds even in large networks.ProFu

    ProFuN TG : Programming Sensornets with Task Graphs for Increased Reliability and Energy-Efficiency

    No full text
    Sensor network macroprogramming methodologies such as the Abstract Task Graph hold the promise of enabling high-level sensor network application development. However, progress in this area is hampered by the scarcity of tools, and also because of insufficient focus on developing tool support for programming applications aware of performance requirements. In this demo we present ProFuN TG (Task Graph), a tool for designing sensor network applications using task graphs. ProFuN TG provides automated task mapping, sensor nodefirmware macrocompilation, application simulation, deployment, and runtime maintenance capabilities. It allows users to incorporate performance requirements in the applications, expressed through constraints on task-to-task dataflows. The tool includes middleware that uses an efficient flooding-based protocol to set up tasks in the network, and also enables runtime assurance by keeping track of the constraint conditions. Through task allocation in a way that optimizes an objective function in a model of the network, and adaptive task reallocation in case of link, node, or sensor failures the tool helps to make sensornet applications both more energy-efficient and reliable.ProFu
    corecore